An Exploration of Neural Sequence-to-Sequence Architectures for Automatic Post-Editing
نویسندگان
چکیده
In this work, we explore multiple neural architectures adapted for the task of automatic post-editing of machine translation output. We focus on neural endto-end models that combine both inputs mt (raw MT output) and src (source language input) in a single neural architecture, modeling {mt, src} → pe directly. Apart from that, we investigate the influence of hard-attention models which seem to be well-suited for monolingual tasks, as well as combinations of both ideas. We report results on data sets provided during the WMT-2016 shared task on automatic post-editing and can demonstrate that dual-attention models that incorporate all available data in the APE scenario in a single model improve on the best shared task system and on all other published results after the shared task. Dual-attention models that are combined with hard attention remain competitive despite applying fewer changes to the input.
منابع مشابه
CUNI System for WMT17 Automatic Post-Editing Task
Following upon the last year’s CUNI system for automatic post-editing of machine translation output, we focus on exploiting the potential of sequence-to-sequence neural models for this task. In this system description paper, we compare several encoder-decoder architectures on a smaller-scale models and present the system we submitted to WMT 2017 Automatic Post-Editing shared task based on this ...
متن کاملCUNI System for WMT16 Automatic Post-Editing and Multimodal Translation Tasks
Neural sequence to sequence learning recently became a very promising paradigm in machine translation, achieving competitive results with statistical phrase-based systems. In this system description paper, we attempt to utilize several recently published methods used for neural sequential learning in order to build systems for WMT 2016 shared tasks of Automatic Post-Editing and Multimodal Machi...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملThe AMU-UEdin Submission to the WMT 2017 Shared Task on Automatic Post-Editing
This work describes the AMU-UEdin submission to the WMT 2017 shared task on Automatic Post-Editing. We explore multiple neural architectures adapted for the task of automatic post-editing of machine translation output. We focus on neural end-to-end models that combine both inputsmt and src in a single neural architecture, modeling {mt, src} → pe directly. Apart from that, we investigate the inf...
متن کاملConvolutional neural network architectures for predicting DNA–protein binding
MOTIVATION Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA-protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications....
متن کامل